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Transport of soluble material is analysed for volume-cycled oscillatory flow in a 
curved tube. The equations of motion are solved using a regular perturbation method 
for small ratio of tube radius to  radius of curvature and order unity amplitude over 
a range of the Womersley parameter. The transport equation is similarly solved by 
a regular perturbation scheme where uniform steady end concentrations and no wall 
flux are assumed. The time-average axial transport of solute is calculated. There is 
substantial modification of transport compared to the straight-tube case and the 
results are interpreted with respect to pulmonary gas exchange. 

1. Introduction 
The delivery and removal of mass (oxygen, carbon dioxide, anaesthetics, drugs, 

aerosols, toxins) and heat through the lung are primary phenomena of normal 
respiration. They are also the main thrust of design for conventional and high- 
frequency ventilators (Bohn et al. 1980; Butler et al. 1980), incubators and nebulizers, 
as well as the result of chemical pollution in the air, both chronic and disaster related. 
The sequence of physical events leading to the exchange of mass and heat between 
the lung and the environment depends on convection and diffusion in an oscillatory 
flow. The basic geometric unit which influences the fluid mechanics and transport 
characteristics is the airway bifurcation joining the parent to the two daughter 
airways. A theoretical analysis of oscillating flow in a tube bifurcation would be 
difficult to attack directly. However, we know from the geometry of a bifurcation 
that it possesses characteristics of both taper and axial curvature through the region, 
as well as flow division. So a reasonable approach is to examine these effects 
individually as a start towards understanding the total phenomenon. 

The effects of taper were investigated both in theory by Grotberg (1984) and 
Godleski & Grotberg (1987) and by experiment by Gaver & Grotberg (1986), and 
were found to have an important influence on transport of soluble and insoluble 
contaminants. In a tapered tube, the streamlines are curved, having axial and radial 
velocity components. Solute is convected along streamlines, but crosses them by 
either radial or axial diffusion. This leads to more complicated transport behaviour 
than straight-tube oscillating flows where only radial diffusion leads to crossing of 
parallel streamlines. Depending on the values of a, the Womersley parameter, and A ,  
the amplitude parameter, the transport predicted for tapered tubes can be greater or 
less than the corresponding straight-tube case as shown by Godleski & Grotberg 
(1987). For insoluble contaminants, which rely solely on convective transport, the 
experiments of Haselton & Scherer (1982) show that volume-cycled oscillating flow 
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in a model bifurcation leads to bidirectional steady streaming. Those data are 
consistent with the predictions by Grotberg (1984) and the experiments of Gaver & 
Grotberg (1986), who studied oscillatory flow in a tapered channel. 

Theoretical investigations of dispersion for unidirectional flows in straight tubes 
have been made by Taylor (1953), for pulsatile flows in curved tubes by Blennerhasset 
(1976) and for oscillatory flows in straight tubes by Chatwin (1975) and Watson 
(1983). The predictions by Watson are consistent with gas exchange experiments 
in a straight tube by Joshi et al. (1983), a companion paper. However, similar 
experiments were conducted by Paloski, Slosberg & Kamm (1987) for a branching 
network of tubes and the transport rates were found to be much higher than the 
predictions of Watson’s single, straight-tube theory. Apparently the presence of 
bifurcations in the network can enhance axial exchange, which raises the importance 
of an enquiry into the effects of taper, curvature, and flow division. 

Laminar dispersion in steady flows in uniformly curved tubes has been the subject 
of several theoretical and experimental studies. Longitudinal dispersion for steady 
laminar flow in helical tubes of small pitch decreases from that in straight tubes as 
shown by the analytical solution of Erdogan & Chatwin (1967) and the numerical 
analysis of Janssen (1976). Most recently, Johnson & Kamm (1986) used Monte 
Carlo and spectral models to calculate dispersion in such a geometry. Their results 
also show disenhancement of longitudinal transport for increasing curvature. 
Experimental evidence further suggests that curvature reduces longitudinal mass 
transport in tubes. Measurements made by Van Den Berg & Deelder (1979) show 
that for small curvature and small diffusion, there is no significant difference between 
mass transport in straight tubes and helical coils. They further show that as diffusion 
and curvature increase, axial dispersion in the helical coils decreases as compared to 
axial dispersion in straight tubes. 

Nigam & Vasudeva (1976) investigated experimentally the effect of small 
pulsations on mass transport in laminar flow in curved tubes and found that 
transport could be higher, equal to or less than that for steady flow, dependent on 
the experimental conditions. This suggests that the oscillatory component has a 
striking influence on the transport characteristics and should be studied inde- 
pendently. 

Prior to solving the transport problem it is necessary to find the velocity field for 
an oscillatory flow in a curved tube. The equations of momentum and conservation 
of mass, given below, have been used by many authors to calculate fluid motions in 
curved tubes. Mullin & Greated (1980) expand the velocity field in integral powers 
of 6, the ratio of tube radius, a ,  to radius of axial curvature, R. To simplify the 
equations and allow some progress, they use the stream function for a straight 
circular cylinder. This technique neglects some terms of O(S) which we will show to 
be important in the transport problem we address here, so we cannot follow their 
method of solution. Berger, Talbot & Yao (1983), however, expand in powers of d 
which brings in convective acceleration effects sooner, since they are stronger. 
However, the effects of curvature are relatively weak in this solution, giving 
secondary motions of O(6) compared to the axial flow. Lyne (1970), whose scaling we 
have followed, utilizes the same stream function as Mullin & Greated. He considers 
solutions of the equations in the limit as &-to. If we let Lyne’s velocity scale, 
W = od, where d = VT/ (na2)  is the stroke distance and VT is the tidal volume, then 
his solution is restricted to A b 1, where A = d / a ,  such that SA2 is O(1). This limit 
is similar to one considered by Smith (1975). The nonlinear inertia terms cause a 
perturbation to the solution before the first-order correction in 6. Now convective 
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acceleration is important at leading order in the Navier-Stokes equations. For 
slightly curved tubes this requires large stroke distance, so that a particle moving an 
axial distance d& experiences an O( 1)  centrifugal force. However, we prefer to  keep 
A x O ( l ) ,  since this is an important parameter regime in a practical sense when 
considering the physiological application. Thus, as in Lyne ( 1970), nonlinear inertia 
effects are analysed as a perturbation to the flow; in fact, when A z 0(1), the 
nonlinear inertia is an O(6)  perturbation to the solution so that techniques as used by 
Mullin & Greated (1980) are appropriate when all O(6) terms are considered. 

2. Problem formulation : velocity field 
Consider a section of a torus shown in figure 1 as representative of the curved 

portion of an airway bifurcation. The fluid oscillates along the axial coordinate, s, 
and we expect secondary flows in the ( r  , $)-plane. The axial radius of curvature is R 
and the tube wall boundary is described by = a.  The fluid has density p and 
kinematic viscosity v. Let the velocity vector be u = (u ,  v, w )  whose components are 
in the (?, $, :)-directions, respectively. The momentum conservation is given by the 
Navier-Stokes equations in toroidal coordinates. Assuming fully developed flow, 
such that &/as = 0, the dimensionless forms of the equations are 

* 
* 

* * * *  

l / ra  (asin$) v l  

(2 . la )  

u7+6A2 

( 2 . l b )  

(w6 cos $) 
h 

(uw6 cos $) - (vw6 sin $) 
h h 

and the conservation of mass for an incompressible fluid is given by: 

u u6cos$ 1 ussin$ 
r h r 

+-u*-- = 0. 
h 

ur+-+- 

Subscripts imply partial differentiation with respect to the indicated independent 
variable, and the symbol h = 1 + Sr cos lif. 

Fluid motion for this problem is driven by an oscillatory pressure gradient such 
that a fixed volume of fluid, V,, passes through any cross-section in one half-cycle. 
We define the angular frequency of oscillation as w and the stroke distance as 
d = VT/na2,  which represents the typical distance a fluid particle moves in a half 
cycle. The typical axial velocity scales with U = wd. Lateral velocities, however, 
depend on the centrifugal acceleration of a particle, given by U 2 / R .  Thus an 
appropriate velocity scale for lateral velocities is U 2 / w R  = SAU. 

The dimensionless variables are defined by the following, 



512 D. M .  Eckmunn und James B. Grotberg 
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FIGURE 1. The toroidal coordinate system. 

The three non-dimensional parameters arising from these scalings appear in the 
above equations and are: the amplitude parameter A = d / a ,  the ratio of stroke 
distance to pipe radius; the Womersley parameter, 01 = a(w/v)i ,  the ratio of pipe 
radius to Stokes layer thickness; and 6 = a / R ,  the curvature parameter. 

The boundary conditions a t  the wall are no slip and no penetration, 

u=O, v = O ,  w = O  a t r = 1 ,  (2.4u, b, c )  

and the axial velocity is constrained to a fixed tidal volume, V,, given by the integral 
constraint : 

wrdrd$ = ;xe''+c.c.; (2.5) 

where C.C. denotes complex conjugate. The constant $IT is selected out of convenience 
since it will allow direct comparison of our results with those of Godleski & Grotberg 
(1987) and Watson (1983). 

3. Method of solution 

equations by defining the stream function x such that 
It is convenient to eliminate pressure as a variable in the u and w momentum 

( 3 . 1 ~ )  

(3.lb) 

which satisfy (2.2) exactly. The addition of the second terms in the definitions of u 
and v makes this treatment of the problem more rigorous than previous investigations 
of Lyne (1970) and Mullin & Greated (1980). Their choice of stream function consists 
of only the first terms for u and v which satisfy continuity for a straight, rather than 
a curved pipe. Substituting our definitions of u and v into equations (2.1 u-c) reduces 
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the velocity field to a system of two equations in two unknowns (w, 2). The boundary 
conditions for this system are 

w = O  a t r = I ,  ( 3 . 2 ~ )  

x = O ,  x r = O  a t r = l ,  (3.2b, c) 

(3.2d, e )  x, w bounded a t  r = 0, 

vorticity bounded at r = 0. (3.2f 1 
The anatomy of the human lung is such that the value of 6 ranges from 

approximately 0.1 to 0.3, so it is appropriate to investigate gently curving tubes, 
6 4 1. This suggests linearizing the equations of fluid motion by using a regular 
perturbation scheme in the small parameter 6. For small axial fluid displacements, 
we expand the axial velocity component and the stream function, w and x, and the 
pressure, p, in powers of 6, as shown: 

w(r, $, 7 )  = wO(rj $, 7 )  + 6wl(r, $, 7 )  +a2w2(r, $, 7 )  + o(83), 

p(r, 11., 7,s) = P,(T, $, 7 , s )  + b , ( r ,  $, 7 , s )  +S2p2(r, $, 7,s) + O ( W .  

(3.34 

(3.3b) 

( 3 . 3 ~ )  

x ( r ,  $, 7 )  = xo(r ,  $, 7 )  + ax1(', $, 7 )  + 0(J2), 

Inserting these expansions into the axial momentum and vorticity equations and 
equating to zero the coefficient of each power of 6 gives a set of linear boundary-value 
problems at successive orders of 6. The leading-order solution is: 

(3.4a) 

(3.4b) 

In these equations, J ,  is the order n Bessel function of the first kind and u = a$. 
The solution to the leading-order stream-function problem is not written explicitly. 

The inhomogeneous forcing term in the equation for xo has steady and 2i7-dependent 
components. We seek a solution to xo which is the sum of a steady part, xf), and a 
periodic part, x$P). By separating variables and employing the technique of variation 
of parameters, xf) is determined to be 

x p  = 91W sin Y+> (3.5) 

where the function g l ( r )  is given in integral form, 

+ar z21nzf,(z)dz-3 lnr  z2fl(z)dz, (3.6) 

and fl(r) = -2a2WO Vor+c.c. The constants b, and c1 are determined from O(1) 
boundary conditions, and the superscript bar denotes complex conjugate. 

A similar technique is used to determine the periodic component of the stream 
function. The solution is of the form 

(3.7) 

(3.8) 

s: I 

x$') = g2(r )  e2i7 sin Y+ + C.C. 

g 2 ( r )  = [e,+F,(K, 247,1)] ~ , ( 2 $ u )  + F ,  ( K ,  2tu, 1) ~ , ( 2 f a r ) ,  where 
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such that Fl(Q, R , N )  and F,(Q, R,  N )  are the coefficients of the particular solution 
determined by variation of parameters and are defined as 

F l ( Q , S , T )  = -$ QYT(SZ)ZdZ, (3.9a) 

F,(Q, S, T )  = 8. QJT(Sz)  zdx, (3.9b) 

I 
I 

and (3.10) 

for G(r)  = W, W,,.. The constants d,, d, and el are determined from the O( 1) boundary 
conditions. 

The solutions to the higher-order equations are found in identical manner. Since 
the leading-order axial velocity component satisfies the volume constraint, we find 
that this requires that, a t  all subsequent O ( P ) ,  Pn, = 0 for n 2 1. Subsequently, the 
forcing terms of the O(6) axial velocity equation can be written as 

[H,(r) eiT+H,(r) e3iT] cos 9. (3.11) 

The solution of w1 is of the form 

w1 = h l ( r ) e i T ~ o s $ + + ~ ( r ) e 3 i T ~ ~ ~ $ + c . ~ .  (3.12) 

(3.13 a) 

(3.13b) 

and k,, k, are constants determined from the boundary condition a t  O(6). 
Looking ahead to the mass flux calculation, we find that the important contri- 

butions from the velocity field, which we will need to solve the convection-diffusion 
equation and determine the effective diffusivity, are the $-independent component 
of w2 which has e"-periodicity, and the steady component of xl. 

The O(6) vorticity equation suggests the form for the first correction to the stream 

x1 = [ [ l ( r ) + ( [ z ( r ) e 2 i T + [ 3 ( r ) e 4 i T + ~ . ~ . ) ]  sing$. (3.14) function 

In this study we only determine gl(r) ,  the radial dependence of the steady stream 
function, by employing the same techniques used to find xo.  The steady forcing terms 
of the O(6) vorticity equation can be combined as a single function, I ( r )  sin 2$. Then 

where h,(r) = [kl +Fl(H,,  f l y  1)l Jl(flr) +F,(Hl,  g, 1)  Y l ( W ,  

h,(r) = [k ,+Fl(H, ,  3 b ,  l)] J1(3hr)+F,(H, ,  3 h ,  1)  Y1(3br), 

cl(r) is given by 

&(r)  = m1r2+&,r4+&r4 

where m, and m2 are constants determined by the boundary conditions at O(6). 
Similarly, upon substitution of the expansions the 0(S2) axial velocity equation 

shows forcing terms dependent on sin2$, cos2$, and independent of $. The 
suggested solution is of the form 

w2 = [hl(r)  ei7+h,(r)e3iT+h3(r)e5iT+c.c.] 

+[p1(r)eiT+p2(r) e3iT+p3(r)e5iT+~.~.]  sin2$ 

+ [&(r)  eiT+ 5,(r) e3iT+ &( r )  e5i7 + c.c.] cos 21,+. (3.16) 
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Our interest is in finding A, ( r )  in this work, since it is a necessary component of the 
mass flux integral to be determined. We calculate A, ( r )  subject to the 0(a2)  boundary 
conditions in the same manner used to solve the O(6) axial velocity equation. The 
radial dependence of the ei'-periodic, $-independent forcing terms of the 0(a2) 
axial velocity equation can be combined into a single function, O(r). Then A,(r) is 
determined to be 

A,(r) = [n, +F,(O, r ,  0)lJJrr) +F2(Oe, fl, 0) Yo(flr), (3.17) 

where n, is determined from no-slip boundary condition a t  r = 1. 

4. Results: velocity field 
The computed axial velocity profiles are shown to O(6) in figure 2 (a,  b) a t  several 

different phases in the cycle. Note that the quasi-steady low a case, plotted in figure 
2 (a ) ,  has the characteristic parabolic shape which is distorted slightly toward the 
outside of the tube. This is similar to the results for steady flow in a curved tube, 
where the centrifugal effects cause a slight outward distortion of the parabolic profile. 
As a increases we see the development of the viscous boundary layer (figure 2b), with 
the velocity higher near the inside wall than at the outside wall. The plots presented 
are for the velocities in the plane of curvature, where the unsteady centrifuging has 
its greatest effect. These results correlate well with the experiments of Bertelsen 
& Thorsen (1982), the theory and experiments of Mullin & Greated (1980) and 
the numerical analysis of Yamane et al. (1985). Careful analysis for a $ 1 of the 
individual non-homogeneous forcing terms in the O(6) axial velocity equation shows 
that the dominant balance is the axial pressure gradient and unsteady acceleration 
in the core. Since p,, = 0 for all n 2 1, the leading-order pressure drives flow a t  all 
subsequent orders of 6. In the term ( l / h )  (applas) of equation (2.lc),  when h-l is 
properly expanded in powers of 6, the pressure gradient p,, influences all orders of 6, 
where its effects are modified by this geometrical coefficient. This explains why the 
velocities are higher on the inside than on the outside to the degree that we find. The 
distance along the inside of the tube is shorter than the distance along the outside; 
therefore the axial pressure gradient must be higher along the inside than the outside 
of the tube. 

The solution to the O(6) axial velocity depends on the forcing term p,, r cos $. 
From our coordinate system we see that $ = 0 corresponds to the outer wall, 
meaning that we add a radial-dependent term to the leading-order solution in the 
outer half of the tube, while $ = 7c corresponds to the inner wall, meaning that we 
subtract that same radial-dependent term from the leading-order solution in the 
inner half of the tube. Thus there is a decrease in the outer-wall velocity and an 
increase in the inner-wall velocity for large enough a, since the O(6) radial- 
dependence of the axial velocity, driven by the axial pressure gradient, is negative. 
The corresponding increase and decrease are of equal magnitude. We would expect 
the magnitudes to differ at  O(62). 

When we allow a to increase above 10 we begin to see appreciable differences in the 
results generated from the asymptotic equations of previous authors and our own 
work. This is shown in figure 3, where the axial velocity profiles for 7 = 0, A = 1, 
6 = 0.3 and a = 15 are plotted for the straight tube, this work and the volume-cycled 
form of the equations used by Mullin & Greated (1980). The variation is particularly 
accentuated a t  this instant in time. Since we are interested in investigating the mass 
transport characteristics of HFV (large a), it  does show the importance of keeping all 
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FIGURE 2. Axial velocity profile in the plane of curvature as a function of r .  A = 1 .O,  8 = 0.3. Phases 
shown are ., 7 = 0;  a, 7 =in; V, 7 =in; +, 7 = in; A, 7 =in. (a )  a = 0.2; ( b )  a = 10.0. 

of the O(S) information when solving the equations of motion. We may otherwise lose 
details of the flow which have an important bearing on the transport phenomena and 
the predictive value of the model. 

The steady cross-sectional streaming is depicted in figure 4(a-c), where closed 
contours of constant x@) to O(S) are drawn. For a = 1 ,  figure 4 ( a )  shows two cells as 
predicted by Lyne (1970). As we increase a to 10, these two cells begin to squeeze 
toward the top and bottom of the tube (figure 4 b ) .  This means that the viscous effects 
of the fluid are being felt near the tube boundary. This is also evident from the 
development of the boundary layer seen in the axial profile for the same value of a. 
When a is increased to 15 we observe in figure 4(c)  the appearance of a second set of 
cells, with opposite vorticity, near the centre of the tube. These vew cells arise from 
a pressure gradient which is no longer opposed by viscous forces in the core region. 
The two original cells are confined to a thinner layer near the wall. 

The cross-sectional steady streaming phenomena have been predicted by previous 
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FIGURE 3. Axial velocity profile in the plane of curvature as a function of T .  A = 1.0, a = 15.0, 
7 = 0. Profiles shown are for A, 6 = 0;  ., IS = 0.3 (Mullin & Greated 1980), 0,  S = 0.3 (our 
results). 

FIGURE 4. Steady streamlines in the tube cross-section. A = 1.0, 6 = 0.3: (a )  a = 1.0; speed 
( u 2 + v 2 ) ~  along y? = $I is: 1; 0.00636; 2. 0.00545; 3. 0.00336; 4. 0.00326; 5. 0.00481; 6. 0.00510. 
( b )  a = 10.0; speed (u2+vz)r along @ = $x is: 1.  0.0166; 2. 0.0264; 3. 0.0209; 4. 0.0215; 5. 0.0594; 
6. 0.0630. (c) a = 15.0; speed (uZ+v2);along $ = $x is: 1.  0.00397; 2. 0.00545; 3. 0.0024; 4.0.0296; 
5. 0.0451 ; 6. 0.0558. 
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authors, but, again, since we are interested in the transport problem, we seek specific 
information about the values of a for which these behaviours occur. For example, 
when A = 1 our work and previous work shows that for a > 11 the second set of 
steady cells has already appeared, since the leading-order equations are the same. 
However, the O(S) terms are much weaker for Lyne (1970) and Mullin & Greated 
(1980) since their equations neglect certain centrifugal terms for simplification of the 
problem. The effect of this is that their cells are much more centred than those shown 
here, which are noticeably off-centre. For example, a t  a = 10, the pair of vortices are 
offset toward the inside wall. At a = 15 these vortices are squeezed against the wall, 
still off-centre to the inside. The new pair of vortices in the core are off-centre to the 
outside. While the solutions are more difficult to obtain, this illustrates the 
importance of retaining all of the terms in the equations of motion at each order. Of 
added significance in terms of transport is that the strength and off-centring of these 
vortices will mix the solute in a distinctly different way from the vortices predicted 
by Lyne (1970) and Mullin & Greated (1980). The ramifications of this are discussed 
in $9. 

5. Problem formulation : concentration field 
Given the velocity field, transport properties of the solute within the tube may be 

calculated from the convection-diffusion equation, which governs the transport of a 
soluble species. In  dimensionless form for toroidal coordinates it is given as: 

C,+SA2 uC,+-C +4 = o ~ - ~ S C - ~ V ~ C ,  ( : * )  h 
where 

The dimensionless local concentration, C ( r ,  $, s, T), is related to its dimensional form, * *  * *  * 
C(r,21/, s ,  t ) ,  by the formula C = (C--CR)/(CL-CR), given that C, and C, are the 
specified steady concentrations a t  the tube ends. The velocity field (u, v, w) used here 
satisfies the Navier-Stokes equations given above. The parameters in the convection- 
diffusion equation are the same as were used in the momentum and mass conservation 
equations. The one new parameter appearing here is the Schmidt number, Sc = v / D ,  
where D is the molecular diffusivity of the solute in the solvent. The boundary 
conditions selected are no flux a t  the tube wall, 

= O  a t r = l ,  
ac 
ar 
- (5.3) 

and the concentration within the tube must be bounded a t  the centre, 

C bounded a t  r = 0. 

We impose uniform time-averaged concentrations at the ends of the curved tube 
such that 

C(S) = 1 a t  s = 0, C@) = 0 at s = 1, (5.5a, b )  

where the superscript (s) denotes the steady component of the concentration. 

(5.4) 
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6. Method of solution: concentration field 
The appearance of the small parameter 6 in the convection-diffusion equation 

suggests a regular perturbation scheme for the concentration field : 

c(r, $, 8, t )  = c,(r, $, s, t )  + S C A ~ ,  $, 8, t )  + s2c2(r, $, 8,  t )  + 0 ~ 3 3 ) .  (6 .1)  

Substituting equations (3.1 a, 6 )  and (6.1) into the convection-diffusion equation 
gives a linear boundary-value problem a t  each order o f  6. The solution to the leading- 
order problem is the straight-pipe solution determined by Watson (1983), 

l (6.2) 
S 

C, = l---+[L(r)e”+c.c.], 

where L ( r )  is determined in the sa,me manner as was used to determine the velocity 
field. The radial dependence of the forcing of the leading-order convection-diffusion 
equation can be represented as T(r)  = - a2ScA W, C,, so that 

L ( r )  = [ 1 ,  + F , ( f ,  Scfa, O)]J , (Scbr)  + F2(I‘, S c b ,  O)Y,(Xcbr), (6 .3)  

where the constant 1, is determined from the O(1) boundary condition a t  r = 1. 
Solving the O(6) problem with this same technique gives the solution 

C, = [U,(r) eiT + U,(r) e31r + c.c.] cos $, (6.4) 

where U ,  = [Z,+F,(Q,, S c b ,  l ) ] J , ( S c b r )  +F,(sZ,, S c b ,  1)  Y,(Scbr) ,  (6 .5a)  

U ,  = [l,+Fl(sZ,, (3Sc)ig, l ) ] J l ( 3 S c ) ~ ~ r ) + F , ( ! 2 , ,  (3Scg)i, 1)Y1((38c)br), (6.5b) 

and s2,(r) and sZ,(r) are the radial dependence of the ei7 and e3iT forcing terms of 
the O(6) convection-diffusion equation, respectively. The constants I, and I, are 
determined from the O(6) boundary condition a t  r = 1. The solution given in (6.4) can 
readily be shown to be independent o f  axial variation. 

The O ( P )  convection-diffusion equation suggests a solution of the form 

C, = [d , ( r )  eiT + d, ( r )  e3i7 + d,(r) e5iT + c.c.1 

+ [ZZ,(r) e”+ ZZ,(r) e3iT+ZZ3(r)e5i7+c.c.] sin 2$ 

+ [ ~ ~ ( r ) e ~ ~ + ~ , ( r ) e ~ ~ ~ + ~ , ( r ) e ~ ~ ~ + c . ~ . ]  cos2$. (6 .6)  

Looking ahead to  the calculation for the mass flux we note that we must find the 
component of C, which is eiT dependent and independent of $. Therefore we solve 
only for d , ( r )  from (6.6) subject to (5 .3)  and (5.4), employing our solution technique 
as before. Upon substitution, the radial dependence of the e”-periodic, $-independent 
forcing term of the O(6,) equation can be written as Z(r) ,  leading to  the solution 

where 1, is a constant determined from (5.3). 

7. Results : concentration field 
The oscillatory component of the concentration field through O(6) in the plane of 

curvature is shown for r = and various values of 01 in figure 5(a-b). It is of note 
here that the Concentration profile mimics the appearance of the velocity profile. 
That is, for large enough a a concentration boundary layer develops near the tube 
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FIGURE 5. Concentration profile in plane of curvature as a function of r .  T = in, Sc = 0.9, 
A = 1.0. Tubes used are A, 6 = 0; 0 ,  6 = 0.15; ., S = 0.3. (a )  a = 1.0; ( b )  a = 10.0. 

wall. The concentration is higher near the inside wall and lower near the outside wall, 
as can be seen from the form of the first correction for the concentration. As we 
described for the velocity case, we again note the dependence of C, on cos + so that 
we add a correction to the straight-tube case on the outer half of the tube and we 
subtract that correction from the straight-tube case on the inner half of the tube. For 
large a the radial-dependence of this correction is negative. A value of 0.9 for the 
Schmidt number is used for all of these graphs. 
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8. Mass transport 
We are interested in the time-mean longitudinal mass transport through the 

curved tube under conditions of volume-cycled flow with uniform steady end con- 
centrations. The dimensionless steady axial mass flow rate, m, is expressed by 

The dimensional steady*axial mass *flow rate, with dimensions of mass per unit time, 
is given by = mvaAG, where AC is the difference between the specified steady 
concentrations a t  the tube ends. The steady local mass flux, = &/nu2, in 
dimensions of mass per unit time per unit cross-sectional tube area, has dimensionless 
form q = m/n where q = &z/vAC. This is independent of the axial coordinate since 
the tube has uniform cross-section. 

Inserting the perturbation solutions to w and C and keeping only the terms which 
are independent of r and @, since these terms integrate to zero, gives 

* 

1 

m = {a2A[W,((r)L(r)+S2 (W,,(r)d,(r)+$[h,(r)  U l ( r )+h2(r )  U2(r ) ]  

where the superscript bar denotes complex conjugate. 

9. Results: mass transport 
Solutions to (8.2) are provided in figures 6-7. Values of Sc = 0.9 and 1 = 7.0+ 

3.5 (3); are used since they are physiologically reasonable and they allow direct 
comparison of these results to those in Godleski & Grotberg (1987). When the 
Womersley parameter is fixed the mass flow rate increases monotonically with A ,  
and the value of 6 determines the magnitude of the increase. This is shown in figure 
6 ( a ,  b) for a: = 2 and 12, respectively. The enhancement of transport over the 
straight-tube case can be explained by the fact that as A increases, the effect of the 
secondary flows due to curvature is to redistribute the soluble material into a 
concentration profile that mimics or ‘overlays ’ the axial velocity profile. Since the 
transport is measured by the product of w and C ,  we find enhancement of transport 
for the curved tube since more of the soluble contaminant is present in the region of 
faster axial flow and less of the soluble species is present in the region of slower axial 
flow. As the curvature of the tube increases, the secondary flows become greater and 
the distortion of the axial velocity and concentration profiles increases in similar 
fashion so that transport increases. This is unlike the case of steady flow where the 
effect of the secondary flows is to distort the concentration profile in a manner not 
similar to the distortion of the axial velocity profile. The regions of faster flow, in this 
case, convect less of the soluble species so that the total transport becomes 
disenhanced from the straight-tube case. Increasing the curvature here means 
decreasing the transport from that in a straight tube as in Johnson & Kamm 
(1986). 

When the Womersley parameter increases for fixed A we again see an increase in 
the transport characteristics of curved tubes over straight tubes. This is plotted in 
figure 7 (a ) .  As a: becomes larger, fluid elements are subjected to greater centrifuging 
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FIQURE 6. Steady mass flow rate as a function of A .  Sc = 0.9. Tubes used are A, 6 = 0;  
0 ,  S = 0.15; ., S = 0.3. (a )  a = 2.0; ( b )  a = 12.0. 

and the lateral motions become greater. In  essence, we are observing the same effect 
described above. These larger secondary flows cause distortion of the concentration 
profile, which mimics the axial velocity profile, resulting in greater mass flux. 

As a increases when A = 5, the mass transport in a straight tube increases 
monotonically whereas the mass delivered by the curved tube is enhanced over the 
straight-tube case and passes through a local maximum. This is depicted in figure 
7 ( b ) .  The enhancement in the curved tube is due to three particular interactions : the 
interaction of W ,  with C,; W ,  with C,; and W ,  with C,. The transport from these 
three components is shown in figure 7 ( c ) .  It is clear that the interaction of W ,  with 
C, dominates the enhancement of transport in the region of the local maximum of 
figure 7 ( b ) .  It might be expected that W,,  the fastest component of the axial flow, 
would convect the greatest amount of mass. However, it is difficult to  offer an 
intuitive description of the behaviour of d , ( r )  ei'+c.c., the component of C, which 
survives the time integral in the Computation of the mass flux. This component is 
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FIGURE 7. (a ,b)  Steady mass flow rate as a function of a. Sc = 0.9. Tubes used are 0 ,  S = 0;  A, 
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a function of a. Sc = 0.9, A = 5 ,  S = 0.3. Interactions are 0 ,  W,c,; W, wlcl; A, w,C,. 
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graphed a t  various phases in the cycle in figure 8 ( a d ) .  For a = 2 the concentrations 
are very small during the cycle, as seen in figure 8(a) .  The mass convected by the 
interaction of these low concentrations with the axial velocity should therefore be 
relatively small, and in figure 7(c )  it  is so observed. When a = 5 ,  figure 8 ( b )  shows 
that the concentration term is in phase with the leading-order axial velocity. The 
regions of fastest flow are near the wall, where the concentrations are lowest, but the 
core flow is carrying highly concentrated fluid. The transport from this interaction 
is large, as seen in figure 7 ( c ) .  When a is increased to 7 ,  figure 8 ( c )  shows this part 
of the concentration field is out of phase with the axial velocity. The interaction 
between the two is thus weakened with the resultant transport decreased. As a 
increases beyond 7, the transport in both the curved and straight tubes increases 
monotonically. The enhancement is still primarily due to the WO&, interaction. 
When a = 10, figure 8 (d )  shows that the concentration component has decreased in 
magnitude. The core flow is slow for large a,  while the flow near the wall is quite fast. 
The region of fastest axial flow convects low concentrations of solute, but this will 
dominate the convection in the core where the velocities are small. As a increases, the 
velocity and concentration profiles do not change much in general character, so the 
enhancement of transport over the straight tube continues to increase, but slowly. 

Careful term by term analysis of the ordered Navier-Stokes and convec- 
tionvdiffusion equations showed that while the dimensionless coefficients (a2A2) 
could become quite large in the parameter ranges selected in this analysis, the terms 
these coefficients multiplied decreased in magnitude such that the products remained 
O(1). This confirmed that ordering the perturbation sequence in powers of 6 was 
appropriate and that corrections remained small, i.e. wo > Sw, > Pw, as S+O. 

A common method of expressing the enhancement of mass transport due$o the 
interaction of diffusion with convection is by defining an effective diffusivity, D,,,, as 
the ratio of the time-mean mass flux to the steady axial conce2tration gradient. For 
the model presented here, this ratio is given by Deff = -q/Ck(s). In dimensionless 
form, this becomes 

* * 

mSc mScl -- -- 
n:C&) 7c . Deff = - 

This is independent of the axial coordinate, s, and varies from the calculated mass 
flow rate, m, by a constant. Therefore, one can see what the effective diffusivity for 
the curved and straight tubes are directly from figures 6 and 7 ,  which depict the 
relationship of m with A and a. 

10. Discussion 
Oscillatory flow in both straight and curved tubes couples axial convection with 

radial diffusion. Solute convected along a streamline can diffuse radially in the 
straight tube to regions of faster axial velocity. The net effect is to enhance axial 
transport over one cycle. In  addition to axial convection, solute is convected radially 
and azimuthally by secondary flows in a curved tube. Solute can cross streamlines by 
axial, radial or azimuthal diffusion, so the coupling mechanism of diffusion and 
convection seen (5.1) includes all these effects. The mass flow rate predicted for 
curved tubes is further enhanced over that of straight tubes for all values of A and 
a investigated. In  a typical ventilator application we can think of fixed A as constant 
tidal volume and increasing a as increasing breathing frequency. Of particular 
interest, then, is the transport for the curved tube when A = 5 .  For 2 < a < 5 there 
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is a rapid rise in the transport and considerable enhancement over the straight-tube 
case. In  a ventilator application, it is valuable to select breathing frequencies that 
will optimize gas exchange within a frequency range tolerable to the patient. The 
model suggests the steep part of the curve in this domain of a as a desirable operating 
region. As a is increased over the range 5 to 10, however, there is relatively little 
change in the overall transport, with both a local maximum followed by a local 
minimum evident. In a clinical setting it is essential to know if the inability to 
increase gas exchange while increasing breathing frequency is a measure of pathology 
or a predictable feature of the mass transport characteristics of a normal lung 
undergoing HFV. Our model indicates that, to the extent that airway curvature is 
important, this inability could, in fact, be expected. 

The effective diffusivity is a convenient method of defining the lumped transport 
properties for straight tubes. In the curved tube it differs from the mass flowrate by 
a multiplicative constant ; therefore an oscillatory flow in a curved tube enhances the 
effective diffusivity of a soluble contaminant. This may explain, in part, the 
experimental results of Paloski et al. (1987) where measured transport rates in a 
branching network of identical straight tubes were greater than those predicted by 
the straight-tube theory of Watson (1983). 
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